Characterization of Vanadia Catalysts Supported On Different Carriers by TPD, TPR

Pham Thanh Huyen*, Nguyen Anh Vu, Nguyen Minh Hien, Le Van Hieu, Dao Van Tuong, Hoang Trong Yem. Petrochemical and Catalysis Material Laboratory, Hanoi University of Technology, Hanoi, Vietnam (*Corresponding author. Tel.: 84.4.8683098, email address: pthuyen@mail.hut.edu.vn)

Introduction

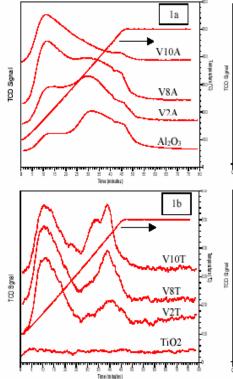
Since V_2O_5/TiO_2 catalysts were successful in the oxidation of oxylene, vanadium-containing catalysts were widely used in the oxidation of other aromatic and paraffinic hydrocarbons [1]. The characterization of these catalysts has been investigated by a great number of physical and chemical methods in many laboratories. But their redox property is not without controversy. TPR (Temperature-programmed Reduction) and NH₂ TPD (Temperature-Programmed Desorption) are powerful methods to characterize the redox property and the surface acidity of solid catalysts [2,3]. In this article, the influence of different supports on the redox property and the acidity of V₂O₅ catalysts will be clarified by TPR and NH₃ TPD.

Experimental

1. Catalyst preparation. Two systems of catalysts were prepared by the wet impregnation. They were indicated as VxA (for V_2O_5/Al_2O_3) and VyT (for V_2O_5/TiO_2), where x and y are the loadings of vanadium expressed in wt. %. Alumina (BET surface area = 195 m²/g) and Titania (BET surface area = 55 m²/g) were impregnated with vanadium oxalate aqueous solution, followed by drying at 110 °C for 14h and calcination at 650 °C and at 450 °C (for VxA and VyT, respectively) for 3h.

Sample	Support	— % wt. V ₂ O ₅	Theoretical monolayer coverage ^(a)	T _{max} (NH ₃ _TPD)			T _{max} (TPR)		
F				Weak	Medium	Strong	Mono- vanadate	Poly- vanadate	V ₂ O ₅ bulk
	$\mathrm{Al}_2\mathrm{O}_3$	0		192.1	369.1				
V2A	$\mathrm{Al}_2\mathrm{O}_3$	2	0.07	191.8	368.8		458		
V8A	$\mathrm{Al}_2\mathrm{O}_3$	8	0.28	173.7	379.0		446.0		
V10A	$\mathrm{Al}_2\mathrm{O}_3$	10	0.35	184.2			444.0		
	TiO_2	0			-		-	-	-
V2T	TiO_2	2	0.25	172.6		443.0	493.5	629.6	
V8T	TiO_2	8	1.00	166.4		418.0	506.7	618.2	
V10T	TiO_2	10	1.25	168.8	356.4	417.5	507.1	618.8	758.3

^(a) Theoretical Monolayer Coverage of V₂O₅ equals 0.145 %V₂O₅/m² [1,4]


2. Characterization of catalysts. Temperature-Programmed Reduction (TPR) with hydrogen and Temperature-Programmed Desorption (TPD) of NH₃ were carried out in a Micromeritics AutoChem II 2920 analyzer.

In the TPR experiments, the sample without pretreatment was reduced with a 10% H₂/Ar mixture (25 ml/min) by heating at 10 °C/min to 800 °C. In the TPD experiments, the sample, after decontaminating at 300 °C, was saturated with 10% NH₃/He (15 ml/min) at 100 °C for 1h, and then was purged with pure He for 1h. For the desorption, it was heated (10 °C/min) to 500 °C in flowing He (25 ml/min).

Results and Discussion

NH₃ TPD of VxA contrasted with that of VyT. When the loadings of vanadia rose, the NH₃ TPD profiles of VxA shifted to low temperature, showing that the amount of weak acid sites increased and the amount of medium and strong acid sites decreased. Contrarily, on NH₃ TPD profiles of VyT, the strong acid sites increased as loadings of vanadia increased. Above monolayer (V10T), a third peak appeared at the middle temperature range.

The TPR of V_2O_5/Al_2O_3 showed only one peak at lower temperature. It was attributed to the reduction of the monovanadate species. There are two reduction peaks in the TPR

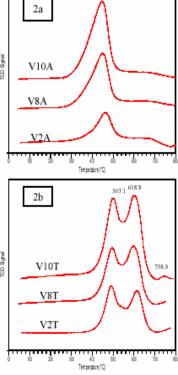


Figure 1. NH_3 TPD of VxA (a) & VyT (b) Figure 2. TPR of VxA (a) & VyT (b)

profiles of V_2O_5/TiO_2 under monolayer coverage (V2T and V8T): they were attributed to the reduction of mono- and poly-vanadate species. When the coverage was over the monolayer (V10T), a third peak appeared at higher temperature, it might be the reduction of V_2O_5 crystallites.

Conclusions

1. When the loadings of vanadia rose, the amount of weak acid sites on VxA increased whereas, the quantity of strong acid sites on VyT increased. 2. V_2O_5 supported on Al_2O_3 was reduced more easily than on TiO₂ because its theoretical monolayer coverage was lower.

References

 B. Grzybowska-Swierkosz, Appl. Catal. A, 157 (1997) 263-310
M.A. Reiche, M.
Maciejewski, A. Baiker, Catal. Today, 56 (2000) 347-355
J.W. Niemantsverdriet, Spectroscopy in Catalysis, Wiley-VCH, 2000
G. C. Bond, Appl. Catal. A, 157 (1997) 91-103.